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ABSTRACT

In this paper, a novel graph-based shape matching scheme for three-dimensional articulated objects is introduced. The

underlying graph structure of a given 3D model is composed of its topological skeleton and local geometric features.

Matching two graph structures is generally an NP-hard combinatorial optimization problem. To reduce computation cost,

two graphs are embedded on a high-dimensional space, and then matched based on an extension of Earth Mover’s Distance

(EMD). Furthermore, the symmetric components of an articulated object are determined by a voting algorithm with a self-

matching strategy to refine the matching correspondences. Experimental results show that the proposed approach is robust,

even when the models are under the surface disturbances of noise addition, smoothing, simplification, similarity

transformation, and pose deformation. In addition, the proposed approach is capable of handling both global and partial

shape matching. Copyright # 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Three-dimensional shape matching is a fundamental and

important research topic in computer graphics and

visualization. The main theme is to find a compact and

accurate shape descriptor to efficiently and robustly match

shapes. Most of previous researches focused on efficient

shape matching. Their algorithms perform very well on

the existing benchmarks for shape retrieval, but do not

pay much attention to 3D objects with various surface

disturbances such as noise addition, smoothing, simplifica-

tion, similarity transformation, and even pose deformation.

Handling 3D shape matching under these surface

disturbances is challenging and interesting. In this paper,

a graph-based shape matching scheme for this problem is

introduced.

As compared with recent work on shape matching,

the proposed scheme has three major contributions. First, a

novel graph-based matching algorithm is proposed, which

is useful for global and partial shape matching. Most

previous works are designed solely either for global [1–4]

or partial shape matching [5]. Second, the underlying

graph structure is composed of a topological skeleton and

local geometric features of 3D model. This graph structure

is useful for robust shape matching. Specifically, the

extracted topological skeleton and geometrical features

are insensitive to various surface disturbances. Thus, our

approach is robust against these surface disturbances.

Third, the symmetry of a 3D object is extracted by a voting

approach with a self-matching strategy, and then used to

assist in shape matching. As a result, our approach can lead

to more accurate matching.

In this paper, the local geometric feature is represented

by a few SHs. Specifically, only a few low-frequency

SHs are used to represent the local geometries. This makes

the proposed approach insensitive to various surface

disturbances. The use of SHs [3,6] or a model skeleton

[7,8] in 3D shape matching is not a novel concept.

However, there are substantial differences between our

method and the previous methods. In the studies [3,6], the

geometric characteristics of entire objects are represented
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as a set of SH coefficients, making them infeasible in cases

of articulated object matching and partial matching. On the

other hand, in the studies of Hilaga et al. [8] and Sundar

et al. [7], shape matching may be incorrect because their

skeleton-based representation lacks the geometric charac-

teristics of 3D objects. In contrast, the proposed approach

utilizes SH coefficients to represent local geometries of 3D

objects and integrate these coefficients with the extracted

skeleton for shape matching.

2. RELATED WORK

The approaches of 3D shape matching can be classified

into two main categories, geometry-based and topology-

based, depending on the type of shape features used in

matching. In the geometry-based approaches, most of them

are based on global geometric descriptors. The shape

similarity is measured by various geometric shape

descriptors such as geometric moments [9], spherical

harmonics (SHs) [2,3,6], and shape distributions [10].

These approaches rely on scale normalization and

orientation alignment, which is used to establish a rough

correspondence between objects. The entire object are

represented as a global feature vector. This will potentially

cause misalignment in local surfaces with similar shapes,

making them infeasible in articulated object matching and

partial shape matching. Recently, some schemes based on

local geometric descriptors have been proposed to solve

this problem [5,11,12]. The idea is to describe the local

geometries by salient geometric features [5,11] or spin

images [12]. The local geometry descriptor allows them to

perform articulated object matching and partial shape

matching. However, the fidelity of salient geometric

features mainly depends on the mesh quality and the

curvature analysis, as mentioned in Reference [5], and

similarly the spin images mainly depends on the vertex

normals. This makes these approaches infeasible in

handling objects with significant noise.

In the topology-based approaches [4,7,8,13], topology is

usually represented as a skeleton. These approaches rely on

the fact that the skeleton is a compact shape descriptor, and

assume that similar shapes have similar skeletons. It allows

a topology-based approach to facilitate efficient shape

matching and even for partial matching [13]. However,

this assumption is not always correct. As mentioned in

Reference [14], similar skeletons may potentially have

completely different shapes. The shapes may be mis-

matched because the skeleton-based representation lacks

the substantial geometric information. Therefore, they

propose a 2D shape matching approach by combining a

graph representation with a geometric feature [14]. The

shortest paths between every pair of skeleton endpoints

are represented as sequences of radii of maximal disks at

the corresponding skeleton points. The shape matching

is based on the similarity of the shortest paths between

each pair of endpoints of pruned skeletons. However,

the accuracy of shape matching mainly depends on the

skeleton pruning. Instead of pruning on graph space, we

first embed the underlying graph on a high-dimensional

space and then performmatching efficiently and accurately

on a set of points.

3. ALGORITHM OVERVIEW

As schematically illustrated in Figure 1, the proposed

scheme consists of four major steps: skeleton extraction,
geometry encoding, symmetry determination, and graph
matching. First, a skeleton extraction approach based

on geometric contraction operation is adopted [15]

(Figure 1(a)). The contraction process produces a mesh

Figure 1. Overview of the proposed shape matching scheme.
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with thin skeleton shape, and the skeleton-vertex corre-

spondences are recorded in each skeleton node. Second,

instead of globally encoding the entire geometry of a given

3D object, the local surface geometry for each skeleton

node is individually encoded by a small set of SHs

(Figure 1(b)). Next, a voting approach with a self-matching

strategy is adopted to extract the symmetric parts of

articulated objects (Figure 1(c)). Combining this useful

information with the skeleton graph can potentially

improve shape matching. Finally, the skeleton containing

nodes and edges are embedded on a high-dimensional

space and becomes a set of points (Figure 1(d)). Therefore,

the graph matching is reduced to the problem of point

set matching. Here, a registration algorithm with the

extended EMD metric is performed for point set matching

(Figure 1(e)).

4. GRAPH CONSTRUCTION

The approach [15] is adopted to extract 3D model skeleton.

This technique is pose-, sampling-, and noise-insensitive.

Therefore, the extracted skeleton has good potential for use

in shape matching. Its connectivity surgery step simul-

taneously records skeleton-vertex correspondence while

collapsing edges. The information of skeleton-vertex

mapping is used to find the local surface patches in the

proposed shape matching approach. The extracted

skeleton-curve is composed of a few junction nodes

(i.e., degree >2), leaf nodes, and several degree¼ 2 nodes

(Figure 2). Generally, the topology of 3D shape can be

concisely represented by only junction and leaf nodes,

since they are the most significant ingredients of skeleton.

Therefore, the local surface patches corresponding to

either the junction or the leaf nodes are considered as the

important geometric components in the proposed scheme.

We utilize all junction and leaf nodes of the extracted

skeleton and their corresponding surface patches to build a

graph structure for shape matching. To compensate for the

lack of degree¼ 2 nodes, we consider their approximated

geometric details to weight the edge of the graph structure.

Given two adjacent nodes in a graph na ¼ ðxa; ya; za; raÞ
and nb ¼ ðxb; yb; zb; rbÞ, where x, y, z represents the

position of the node and r represents the average radius of a
degree¼ 2 nodes, we define the weight of edge connecting

two adjacent nodes as

Wðna; nbÞ ¼ kna�n1k þ kn1�n2k þ � � � þ knh�nbk (1)

where n1 � � � nh represent the successive degree¼ 2 nodes

between the nodes na and nb.

5. GEOMETRY ENCODING

The surface patches obtained from skeleton-vertex

mapping is encoded by SH, i.e., a geometry descriptor.

We refer the readers to the related SHs papers [2,3] for a

more comprehensive comparison on geometry descriptors.

In this section, we describe the SH representation for

surface patches. A set of SH functions constitute an

Figure 2. Skeleton extraction result. Left: Models and their skeletons. Middle: Close-up views of the junction and leaf nodes. Right:

The corresponding surface patches visualized in gold color.
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orthonormal system on a sphere. Any functions f ðu;fÞ on a
sphere can be represented by a linear combination of these

basis functions Ym
l ðu; fÞ as follows:

f ðu; fÞ ¼
X1

l¼0

Xl

m¼�l
aml Y

m
l ðu;fÞ (2)

where aml are the SH coefficients. Given a maximum

degree lmax, an orthonormal system expanded by the SHs

involves ðlmax þ 1Þ2 coefficients. For a function with a set

of spherical samples ðui;fiÞ and their function values

fi ¼ f ðui;fiÞ, 1 � i � k, the coefficients aml can be

obtained by solving a least-square fitting [16] as follows:

y1;1 y1;2 � � � y1;k
y2;1 y2;2 � � � y2;k

..

. ..
. ..

.

yn;1 yn;2 � � � yn;k

0
BBB@

1
CCCA

b1
b2

..

.

bk

0
BBB@

1
CCCA ¼

f1
f2

..

.

fk

0
BBB@

1
CCCA (3)

where yi;j ¼ Ym
l ðui;fiÞ, bj ¼ aml , j ¼ l2 þ lþ mþ 1, and

k ¼ ðlmaxþ1Þ2. The coefficients calculated by Equation (3)
are 3-tuple vectors aml ¼ ðamlx; amly; amlzÞ. Since the L2-norm

of the SH coefficients is rotation-invariant [16], a local

surface patch is encoded as

SHðf ðu;fÞÞ ¼ ðfjam0 jg00; fjam1 jg1�1; � � � ; fjamlmax
jglmax

�lmax
Þ (4)

To make the geometric encoding insensitive to various

surface disturbances, only a few low-frequency SHs are

used to encode surface patches lmax is set to 5.

6. GRAPH MATCHING
ALGORITHM

A graph G can be described as a pair (N, E), where N is a

set of nodes and E is a set of edges connecting the nodes.

In the general setting of graph matching, two graphs

Gs ¼ ðNs;EsÞ and Gt ¼ ðNt;EtÞ are given. The goal is to

establish correspondence among the nodes and edges of

these two graphs. The proposed approach is based on Earth

Mover’s Distance (EMD) [17], which is a well-known

similarity measurement in 2D image retrieval. EMD can be

used to match graphs with various sizes in nodes and edges.

However, the quality of graph matching relies not only on

node matching but also on graph structure matching.

To incorporate the graph structure in the node matching,

we further extend a low-distortion embedding approach

[18] to embed a graph containing both the edges and

vertices to a set of points on a high-dimensional space

(Section 6.2). Thus, a complicated graph matching is

reduced to a point set matching. Generally, there is an

affine transformation among these two point sets. Hence, a

registration process is required to align point sets based on

the EMD distance measurement (Section 6.3). To improve

the matching accuracy, the local geometric features and the

neighborhood information are also incorporated into

the distance measurement (Section 6.4). In addition, the

symmetric components of graphs are determined for better

and consistent matching in the final result (Section 6.5).

6.1. Earth Mover’s Distance (EMD)

A set of nodes with weights in a graph is denoted as

N ¼ fðni;wiÞgni¼1, where ni and wi represent the ith node

and its weight, respectively, and n is the number of nodes.

The weight wi is set to the percentage of area of the local

surface belonging to the node ni over the total surface area
of the input mesh. In this manner, a node corresponding to a

large surface patch will be assigned a large weight. Given

two node sets, Ns and Nt, a probability matrix (or called

flow) between these two sets is defined as F ¼ ½fij�2Rm�n,

where m and Nt, respectively, and fij is the probability of

nsi matching to ntj. Denote all possible flows between N
s and

Nt as CðNs;NtÞ, and EMDðNs;NtÞ is defined as the

minimum amount of matching cost in all possible flows,

that is:

EMDðNs;NtÞ ¼ minF2CðNs;NtÞCostðF;Ns;NtÞ
min

P
ws;

P
wtð Þ (5)

where CostðF;Ns;NtÞ is the cost function for a possible

flow F between Ns and Nt. The cost function is defined as:

CostðF;Ns;NtÞ ¼
Xm

i¼1

Xn

j¼1
fijdðnsi ; ntjÞ (6)

where nsi2Ns, ntj2Nt, and dðnsi ; ntjÞ represent the distance

between nodes nsi and ntj.

6.2. Graph-space to Euclidean-space
Embedding

The complexity of graph matching is usually much

higher than point set matching. Graph matching requires

appropriate pruning to speed up execution and to find the

correct results. In contrast, matching in Euclidean space

simply finds a transformation between two point sets.

We consider the embedding fg : N ! P, where N is a set of

graph nodes with a set of distances D (i.e., the distances

between all pairs of nodes), and P is a set of points in a

high-dimensional Euclidean space. This embedding

aims at transforming the matching problem defined over

the complex graph space into the problem defined over the

simple Euclidean space. This embedding is achieved as

follows. First, a graph is converted into a tree structure and

then a tree decomposition method [18] is applied to further

embed a tree into a Euclidean space. Two input graphs

may be embedded into two Euclidean spaces with different

dimensionalities. Thus, a dimensionality expansion pro-

cess is required in the second step to make them identical in

dimensionality prior to matching.

Before embedding, the input graph is first converted to a

tree structure. This requires that the shortest-path distances

between any two nodes in the tree are similar to that in the

graph. Thus, the minimal spanning tree is selected, and the

node is selected as a root node if the summation of

distances between it to all other nodes is minimal. The

corresponding root node in another graph is determined

according to the neighborhood similarity of node. Then the
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idea of tree decomposition [18] is adopted to embed a tree

to a Euclidean space.

Tree Decomposition: As illustrated in Figure 3, the tree

is first decomposed into several disjoint paths. Among

these disjoint paths, the thick blue paths starting at the root

node to the leaf nodes are called level-1 path, which are

extracted by a modified depth-first-search (DFS) traversal

approach. The tree traversal starts at the root node and then

traverses the sub-trees of root node by DFS. In this

example, the root node has three branches. Thus, there are

three level-1 paths. After removing the level-1 paths from

the tree, three trees remain. The same traverse strategy is

used on the remaining trees. We can extract another three

disjoint paths, called level-2 path (i.e., thin yellow thin

paths). This process is repeated until all edges in the tree

have been traversed and removed. In Figure 3, there are

seven paths in total. Note that we randomly select branches

in the process of DFS and thus, there is an affine

transformation among the embedded point sets and a

registration process is required to align the point sets.

Euclidean Space Embedding: In this step, a tree T is

converted into a Euclidean space P, i.e., ft : T ! P. The

dimension of P is the number of paths, denoted as k.
In other words, ft is a k-tuple vector (P1; � � � ;Pk). The

components P1; � � � ;Pk are associated with the decom-

posed paths in increasing order of tree decomposition

levels. As first three components P1, P2, and P3 correspond

to the three level-1 paths. The components P4, P5, and P6

correspond to the three level-2 paths, and the component

P7 corresponds to the level-3 path. The component

coefficients are defined as the distances traversed in the

corresponding paths. For example in Figure 3, the traversal

path from root node to node v goes through level-1 path P1,

and the distance traversed in this path is 5. It then goes

through the level-2 path P4, and its traversal distance in this

path is 2. Thus, f(v) is represented as (5,0,0,2,0,0,0) in <7.

Note that the tree decomposition does not preserve any

consistent traversal order between graphs. Thus, estimating

the affine transformation between two embeddings is

necessary before embedding matching.

6.3. Dimensionality Expansion and Point
Sets Matching

The input graphs may be embedded into spaces of

different dimensionalities on Euclidean space. Unifying

the dimensionalities of their embeddings is required before

matching. Generally, a dimensionality reduction process,

transforming the embeddings of higher dimensionality to

a new coordinate system of lower dimensionality, can be

adopted here to reduce computation time. However, the

dimension reduction will lose some characteristic features

of the graph of higher dimensionality. This will lead to

failed partial matching. For example in Figure 4, we expect

that the red, blue, and yellow nodes in the embeddings are

matched. However, after reducing the dimensionalities, not

only the components with lower level are reduced but also

the yellow component of the embedding shown in the top

figure is reduced to the blue component. This makes the

nodes marked by red and brown quadrangles mismatched.

Some examples of partial matching by dimensionality

reduction are shown in Fig. 5. To overcome this problem,

we alternatively adopt a dimensionality expansion process

that transforms the embedding with lower dimensionality

to a new coordinate system of higher dimensionality by

simply padding zeros in the corresponding empty com-

ponents level by level. Adopting this lossless dimension-

ality expansion process gives a good chance to provide not

only the global but also the local shape matching.

Once two embeddings have identical dimensionality,

we find the affine transformation between these two

embeddings based on the EMD distance measurement. We

adopt an iterative process called optimal Flow and optimal

Transformation (FT) that alternately find the best flow for a

given transformation and find the best transformation for a

given flow [17]. Given an initial transformation T(0), the
iteration is formulated as

FðkÞ ¼ argminF2CðEs;EtÞ
Xm
i¼1

Xn
j¼1

fijdðnsi ; Tk�1ðntjÞÞ (7)

T ðkÞ ¼ argminT2t
Xm
i¼1

Xn
j¼1

f
ðk�1Þ
ij dðnsi ; TðntjÞÞ (8)

Figure 3. Euclidean space embedding by tree decomposition.

Figure 4. Point set matching by dimensionality reduction pro-

cess. Left: The embeddings; Right: The results of dimensionality

reduction (the dimensionalities are displayed by colors) and

matching (the corresponding nodes are marked by quadrangles

with the same color).
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where Es and Et represent the embeddings of graphsGs and

Gt, respectively, in Euclidean space, and t represents the

set of allowable affine transformations. In each iteration,

we calculate Equation (7) to obtain the correspondence of

these two embeddings, and then estimate the new

transformation between these two embeddings by

Equation (8). When the iteration process converges, the

flow matrix F contains the matching correspondences, and

EMDðES;EtÞ indicates the similarity value of these two

graphs.

6.4. Distance Metric

We need to calculate the distance between nodes in

matching. To define this distance, three distance terms are

considered, that is (1) node distance, (2) geometric

similarity, and (3) neighborhood similarity. The term of

node distance is simply defined as the Euclidean distance

between two embedded nodes. The term of geometric

similarity is defined as the difference in SH coefficients

between the nodes (i.e., sh() in Equation (9)). To define the

neighborhood similarity (i.e., ns() in Equation (9)),a local

similarity matrix LS ¼ ½lsij�2Rm�n between Ns and Nt is

generated. The entity lsij represents the neighborhood

similarity between the nodes nsi and ntj, in which node

neighborhood is defined as the immediately adjacent nodes

and the connecting edges. The similarity lsij is calculated

by first embedding the neighborhood of nsi and ntj and then

computing the similarity between two embeddings. Note

that we also use Equation (9) to compute lsij, but do not

include the term ns(). The computation cost of the local

similarity matrix will not be time-consuming because the

neighborhood of each node contains only a few nodes and

edges. Finally, the distance used in EMD is reformulated as:

CostðF;Es;EtÞ¼P
m

i¼1

Pn
j¼1

fij�ðdðesi ; etjÞþshðnsi ; ntjÞþnsðnsi ; ntjÞÞ;
shðnsi ; ntjÞ ¼ kSHðsur f ðnsi ÞÞ�SHðsur f ðntjÞÞk;

nsðnsi ; ntjÞ ¼ lsij

(9)

where esi and etj represent the embeddings of nodes nsi and

ntj, respectively; surf(k) represents the corresponding

local surface patch of a node k; and dðesi ; etjÞ represents

the 2-norm Euclidean distance between the two embedded

nodes esi and etj.

6.5. Symmetry Determination

Most shape matching approaches do not consider object

symmetry, potentially resulting in inconsistent matching

correspondence. Inspired by Podolak et al. [19], a fast

global symmetry determination approach based on a voting

strategy with a self-matching approach is introduced. To

take efficiency into account, we only determine a global

median axis for skeleton and skip local symmetric parts.

The global median axis is generally sufficient to improve

the shape matching. All nodes in the skeleton graph are

separated into two categories: belonging to the symmetric

parts and the median axis part. For each voting, a pair of

leaf nodes denoted as (ni, nj) is selected, and the possibility
of node nk to be the median axis is formulated as:

Sðni;njÞnk
¼ L1=L2 (10)

where L1 and L2 represent the distances between nk and

the selected leaf nodes ni and nj. Let L2> L1, the range of
scope is [0,1]. For example in Figure 6, two corresponding

pairs of leaf nodes in the fingers and toes are selected.

The possibility of the remaining node nk is visualized.

Blue nodes near the selected leaf nodes have low

possibility, and red nodes near the body parts have high

possibility. In this manner, a vote can be casted on each nk,
and a possible median axis is determined by grouping

nodes with higher scores. Once the possible median axis is

obtained, the symmetric parts separated by this median

axis can also be determined. Figure 7 shows some results of

the possible symmetric parts extracted from different votes.

For each case in this figure, blue and red sub-trees are

extracted symmetric parts using the orange sub-tree as

the median axis. For each voting, the symmetric parts can

be extracted and the scores of all nodes can be obtained.

For consistent symmetry determination, each voting is

weighted by a self-matching strategy. A large weight is

given to a vote if its extracted symmetric sub-trees have

high similarity. Thus, the score Snk of node nk is

Figure 5. The failed partial matching results.
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reformulated as:

Snk ¼
P

ðni;njÞ2candidate set wijS
ðni;njÞ
nkP

ðni;njÞ2candidate set wij

(11)

wherewij is theweight of S
ðni ;njÞ, i.e., the similarity between

two extracted sub-trees.

Once each node is computed by Equation (11), the nodes

with high scores are defined as the median axis. Then, the

connected parts separated by the median axis are extracted

as the symmetric parts. Once the median axis is obtained,

the correspondence of each sub-tree is determined by

finding the sub-tree with the highest similarity. Figure 8

shows several results of symmetric parts and their

symmetric axis. In this example, the median axis is

composed of orange nodes, and the blue sub-tree

corresponds to the red sub-tree.

7. EXPERIMENTAL RESULTS AND
DISCUSSION

Experimental results are evaluated on a PC with a

2.13GHz CPU and 2.0GB memory. On average, the

computation time for preprocessing is 12.37 seconds

(10 seconds for skeleton extraction, 2.37 seconds for

SHs encoding), and that for shape matching is 1.573

(0.032 seconds for graph embedding, 1.541 seconds for

matching). To evaluate the robustness of our approach, the

models with various surface distributions are tested. The

generated matching correspondences shown in Figure 9

are almost identical. This demonstrates that our approach

can potentially obtain correct matching even the models

are substantially altered by these surface disturbances.

Most of the shape matching approaches are based

either on geometric features [2,3,5,11] or topological

features [7,8,12]. It is difficult to perform exact compari-

sons without obtaining their codes or re-implementing

these methods. In order to make an objective conceptual

comparison of these approaches regardless of the

subtle details of each method, we proposed the following

arrangement. The skeleton and SHs coefficients are

selected as features in the topology-based and geometry-

based shape matching, respectively. In other words, either

the distance term d() or the SH coefficient term sh() is

respectively used only in the cost evaluation function

Equation (9) to represent methods using either topological

or geometric attributes. The experimental results are shown

in Figure 10. Expectedly, the matching results by using

only topological or geometric features are worse than the

results of combining both. This is because similar objects

may have dissimilar skeletons, and similar skeletons may

have visually different shapes. Our approach utilizing

geometric features, topological features, a neighborhood

Figure 6. Voting example. The nodes in red circles are the selected leaf nodes. The voting scores are visualized by color ranging from

0.0 (blue) to 1.0 (red).

Figure 7. Result of extracted symmetric parts from different voting; red and blue sub-trees are symmetric parts, and the orange sub-

tree is the corresponding medial axis part.
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similarity measurement, and object symmetry information

in graph matching can potentially handle articulated

objects well when geometric shapes or topological

skeletons are very different (as shown in Figure 11). In

addition, with the process of dimensionality expansion in

graph matching, our approach can handle both partial and

global shape matching (as shown in Figures 11 and 12)

using the same algorithm.

Finally, we show a theoretical comparison of robustness

between our approach and the related 3D shape matching

Figure 8. Result of symmetry. The group of red nodes and the group of blue nodes are symmetry.

Figure 9. Shape matching under various disturbances.

Figure 10. Comparison of shapematching. (a) Using skeletons; (b) using SH coefficients; (c) using both skeletons and SH coefficients;

(d) using skeletons, SH coefficients, and symmetry information shown in (e).
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approaches [1–3,5,8,13] in Table 1. The robustness of

matching under various operations, and the capabilities of

partial and global matching are considered. As mentioned

previously, the approaches based on global geometric

features [2,3] are sensitive to pose deformation since

the geometric shape will be altered by pose deformation.

The approach based on local salient geometric features [5]

or matching in a spectral domain [1] is partially sensitive to

noise addition and simplification because shape matching

is mainly based on curvature analysis. As for the topology-

based approaches [8,13], they are also slightly sensitive to

noise addition and simplification because skeletons may be

slightly different after the models are altered by these two

kinds of surface disturbances. In our approach, we have a

good chance to solve this problem by enhancing the

graph nodes with local geometric features, adopting the

process of dimensionality expansion and neighborhood

similarity measurement in the graph matching, and

utilizing object symmetries to assist in matching corre-

spondences.

8. CONCLUSIONS AND FUTURE
WORK

We presented a novel graph-based technique for 3D shape

matching. Our approach can accurately obtain both

partial and global matching correspondence between the

3D articulated shapes. The skeleton associated with local

geometric features is constructed by noise-, connectivity-,

and resolution-insensitive skeleton extraction and

geometric representation approaches, thus making our

approach insensitive to various surface distributions

including similarity transformation, smoothing, noise

addition, simplification, and pose deformation. The

experimental results demonstrate that our approach is

better in terms of matching accuracy than those using

geometric or topological features only in shape matching.

A limitation still exists in our approach. Our approach

only works for closed mesh models with manifold

connectivity since the geometry contraction in skeleton

extraction requires a well-defined Laplace operator for

Figure 11. Result of global shape matching.

Figure 12. Result of partial shape matching.

Table 1. Theoretical comparison between our approach and the related schemes [1,2, 3, 5, 8, 13].

T. F. G. F. Matching N. A. Smoothing P. D. S.T. Simp.

[2] None SHs (1) H H X H H

[3] None SHs (1) H H X H H

[1] None Dist. (1) 4 * H H 4
[5] None Saliency (2) 4 * H H *

[8] Reeb graph None (1), (2) * H H H *

[13] Skeleton curve None (1), (2) * H H H *

Our approach Skeleton graph SHs (1), (2) H H H H H

The surface disturbances of noise addition (P. D.), smoothing, pose deformation (P. D.), similarity transformation (S. T.), and simplification (Simp.) are tested.

The symbols ‘X’, ‘4’, ‘*’,‘H’ indicate that this approach is sensitive, partially sensitive, slightly sensitive, and insensitive to the surface disturbance,

respectively. The approaches based on what kind of topological feature (T. F.) and geometric feature (G. F.) are shown in columns 2 and 3. The abilities of

global matching (1) and partially matching (2) are shown in column 4.
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every vertex. In the near future, we plan to further

extend this framework to solve the problem of automatic

correspondence establishment, which is another interesting

and challenging problem. Moreover, we also plan to apply

our approach to polygon morphing [20] and to motion

retargeting as suggested by Reference [21].
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